*Tarek M. Abu Elmaati
Department of Textile Printing \& Dyeing, Faculty of Applied Arts, Damietta, Mansoura University, Egypt
Email.tasaid@hotmail.com
Received February 28, 2004

Abstract

Treating 5-(4-phenylcarboxamido)-3-cyano-4-methylpyridin-2(1H)thione (3) with elemental sulfur yielded thienopyridine 4. Compound 4 reacts with acrylonitrile to give isoquinoline 7. Compound 7 was also, prepared from $\mathbf{3}$ and methylenemalononitrile. Reaction of $\mathbf{3}$ with dimethylacetylene dicarboxylate (DMAD) gave the pyridothiazole 9 . Also, $\mathbf{3}$ reacted with N, N-dimethylchloroacetamide (10) to afford compound $\mathbf{1 1}$ which further reacted with the reagents $\mathbf{1 2}, \mathbf{1 3}$ and $\mathbf{1 4}$ providing the thieno[2,3-b]pyridine derivatives 15, $\mathbf{1 6}$ and 17 respectively.

J. Heterocyclic Chem., 41, 947 (2004).

Alkylheterocycles are versatile reagents and can be utilized in synthesis of polyfunctionally substituted benzo[c]coumarine, benzo[c]pyrano[3,2-c]quinoline and pyridopyridazine derivatives [1-7]. These heterocycles are interesting as potential biodegradable agrochemicals [1-4,6], pharmaceuticals and intermediates for the preparation of dyes [6]. In the past decade, our research group was involved in a program to develop new synthetic routes to polyfunctionally substituted heteroarenes using methylazinylcarbonitriles as starting compounds [8,9].

In continuation to this interest, we report here the utility of 3-cyano-4-methylpyridin-2(1H)one derivative $\mathbf{3}$ as starting material to prepare polyfunctional substituted isoquinoline, pyridothiazole and thieno[2,3-b]pyridine derivatives. Thus, it has been found that $1-(N-p-$ chlorophenyl)-2-(N-dimethylaminomethino)-3-oxobutanamide [8] (1) was condensed with cyanothioacetamide in ethanol/sodium ethoxide to yield 3 (68\%). The pyridine structure $\mathbf{3}$ is supported from its elemental composition and spectral data.

Scheme 1

Compound 3 reacted with elemental sulfur in ethanolic triethylamine solution to yield the thienopyridine 4 (61%). Compound 4 was found to be highly reactive toward activated double bond systems. Thus, the product of addition and hydrogen sulfide elimination was obtained upon reacting 4 with acrylonitrile in dioxane under reflux conditions with acetic acid catalyst. Structure $7(65 \%)$ was assigned as a reaction product based on correct elemental composition and spectral data. Compound 7 was also synthesized via reacting 3 with methylenemalononitrile in ethanol containing a catalytic amount of piperidine ($c f$. Scheme 2).

Reaction of $2(1 H)$-pyridinethiones with dimethylacetylene dicarboxylate (DMAD) is known to give thia-zolo[3,2-a]pyridinium salts. At the same time, the reaction of $2(1 H)$-pyridinethiones with methyl propynoate results in acyclic condensation products [10,11]. By analogy with the reaction of malonothioamide and with the chemistry of the 5-mercaptoazoles [12], one can expect the formation of both pyridothiazine $\mathbf{8}$ and pyridothiazole of type $\mathbf{9}$ from the reaction of compound $\mathbf{3}$ with DMAD. It has been found that the reaction of pyridinethione 3 with DMAD in chloroform in the presence of triethyl amine selectively affords thiazolo[3,2-a]pyridine 9 in good yield. The structure assignment of the compound prepared follows from its NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum of 9 shows a signal at 6.68 ppm . This is in accordance with the presence of an exocyclic double bond in the structure.

Thieno[2,3-b]pyridines are known for their anti-allergic activity in the passive coetaneous anaphylaxis $[13,14]$ and as starting materials for tricyclic heterocycles. Thus, compound 3 was reacted with N, N-chloroacetamide (10) to give the target compound 11 in a one pot reaction via a carboxamidomethylthio derivative as intermediate (cf. Scheme 4).

Scheme 2

Scheme 3

3

9

Other ways for the synthesis of the title compounds were the aminolysis of compound 11 with morphline-4caboxaldehyde (12) and dimethylformamide (13) as well as the reaction of compound 11 with 2,5-dimethoxytetrahydrofuran (14) to give the thieno[2,3-b]derivatives 15 , 16 and 17 respectively ($c f$. Scheme 4).

In conclusion, this paper describes a novel one pot synthesis of isoquinoline, thiazolopyridine and thieno[2,3b]pyridine derivatives using inexpensive and readily obtainable starting materials.

All melting points are uncorrected. IR spectra were recorded in KBr disks using a Shimadzu IR-740 spectrophotomter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-300 spectrometer with $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO as solvent and TMS as internal standard; chemical shifts are reported in $\mathrm{ppm}(\delta)$. Mass spectra were measured on GC/MS INCOS XL Finnigan MAT. Microanalysis were performed on LECOCHNS-932
Reaction of 1 with Cyanothioacetamide: Formation of 5-(4-Phenylcarboxamido)-3-cyano-4-methylpyridin-2(1H)thione (3).

A mixture of compound $\mathbf{1}(2.32 \mathrm{~g}, 0.01 \mathrm{~mol})$ and cyanothioacetamide ($1.0 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethanolic sodium ethoxide (30 mL) was refluxed for 30 min . The reaction mixture was poured into water and acidified with dil. HCl . The precipitate formed was collected by filtration and crystallized from ethanol to give compound 3. Compound $\mathbf{3}$ was obtained as yellow crystals; mp 235 ${ }^{\circ} \mathrm{C}$; yield 68%; IR: $v_{\max } 3322,3200(\mathrm{NH}) ; 2220(\mathrm{CN}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.00-7.64(\mathrm{~m}, 5 \mathrm{H}$, arom$\mathrm{H}) ; 8.2$ (s, $1 \mathrm{H}, \mathrm{CH}$); 9.2 (s, $1 \mathrm{H}, \mathrm{NH}$); 14.2 (br s, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-$ NMR($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{C}} 185.8$ (thioamide), 163.8 (CO-amide); 135.2, 128.7, 128.7, 124.1, 120.4, 120.4 (aromatic-carbons); 167.5, 143.1, 116.6, 107.8 (vinyl-carbons); 117.2 (CN); 12.00 $\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}) 269$.
Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$ (269.32): C, 62.43; H, 4.12; N , 15.60. Found: C, $62.80 ; \mathrm{H}, 4.16$; N, 15.65.

3-Amino-4-(4-phenylcarboxamido)thienopyridine-2(1H)thione (4).

A solution of compound $\mathbf{3}(2.69 \mathrm{~g}, 0.01 \mathrm{~mol})$ in DMF (10 mL) was treated with elemental sulfur ($0.32 \mathrm{~g}, 0.01 \mathrm{~mol}$) and piperidine $(0.2 \mathrm{~mL})$. The reaction mixture was refluxed for 4 h , then poured into water, the solid product, so formed, was collected by filtration and crystallized from ethanol-DMF. Compound $\mathbf{4}$ was

Scheme 4

17

16

15
obtained as brown crystals; $\mathrm{mp} 275^{\circ} \mathrm{C}$; yield 61%; IR: $v_{\text {max }}$ 3400, $3280\left(\mathrm{NH}_{2}\right.$ and NH); $1680(\mathrm{CO}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 6.4\left(\mathrm{~s}, 1 \mathrm{H}\right.$, thiophene-H); 7.00-8.3 (7 H , arom- H and NH_{2}); 8.18 (s, $1 \mathrm{H}, \mathrm{CH}$); 9.24 (s, $1 \mathrm{H}, \mathrm{NH}$); 12.4 (br s, $1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}-$ NMR ($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{C}} 195.1$ (thioamide), 163.8 (CO); 138.2, 120.4, 128.7, 124.1, 128.7, 120.4 (aromatic-carbons); 122.1, 133.3, 142.0, 138.2 (thiophene-carbons); 117.5 (vinyl-carbon); MS (m/z) 301.
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (301.39): C, $55.79 ; \mathrm{H}, 3.68 ; \mathrm{N}$, 13.94. Found: C, $55.40 ; \mathrm{H}, 4.10 ;$ N, 13.82 .

Preparation of 3-Amino-7-(phenylcarboxamido)-4-cyanoiso-quinoline-2(1H)thione (7).

Method A.

A mixture of compound $4(3.01 \mathrm{~g}, 0.01 \mathrm{~mol})$ and $(0.65 \mathrm{~g}, 0.01$ mol) of acrylonitrile in dioxane (30 mL) was heated under reflux for 6 hours. The reaction mixture was cooled and the solvent evaporated in vacuo to give a solid product that was collected by filtration and recrystallized from ethanol/DMF.

Method B.

In a 100 ml flask, a solution of compound $\mathbf{3}(2.69 \mathrm{~g}, 0.01 \mathrm{~mol})$ in pyridine (30 mL) was treated with methylenemalononitrile $(0.01 \mathrm{~mol})$. The reaction mixture was refluxed for $4-6 \mathrm{~h}$, left to
cool to rt, poured into ice-cold water, and neutralized with HCl (10%). The solid product was collected by filtration and crystallized from ethanol. Compound $\mathbf{7}$ was obtained as brown crystals; $\mathrm{mp} 300{ }^{\circ} \mathrm{C}$; yield 65%; IR: $v_{\text {max }} 3448,3290\left(\mathrm{NH}_{2}\right.$ and NH$)$; $2221(\mathrm{CN})$ and $1660(\mathrm{CO}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO): $\delta_{\mathrm{H}} 6.16$ (s, $1 \mathrm{H}, \mathrm{CH})$; 6.8-7.1 (m, 6 H , arom-H and $\left.\mathrm{NH}_{2}\right), 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH})$, $7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ; 9.40$ (br s, $1 \mathrm{H}, \mathrm{NH}$); 12.21 (br s, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{C}} 195.5$ (thioamide), 164.2(CO-amide), 148.9, 136.3, 136.2, 135.1, 129.4, 129.1, 129.1, 121.8, 121.8, 118.5, 117.0, 98.4 (aromatic-carbons), 126.1, 117.4 (vinyl-carbons), 116.2 (nitrile-carbon); MS (m/z) 320.37.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{OS}$ (320.37): C, 63.73; H, 3.78; N , 17.49 \%. Found: C, 63.70; H, 3.42; N, 17.42

Reaction of Compound $\mathbf{3}$ with DMAD: Formation of Methyl (8-Cyano-7-methyl-3-oxo-6-phenylcarbamoyl-8aH-thiazolo[3,2-a]-pyridine-2-ylidine)acetate (9).

The acetylenecarboxylic ester (0.0015 mol) was added to a suspension of compound $\mathbf{3}(2.69 \mathrm{~g}, 0.001 \mathrm{~mol})$ in chloroform with triethylamine (0.001 mol). The reaction mixture was stirred at room temperature for $1-3 \mathrm{~h}$ until, according to TLC, all the starting material had disappeared. On cooling, a precipitate was formed, which was collected by filtration and crystallized from methanol
to afford compound $\mathbf{9}$ as yellow crystals, $\mathrm{mp}>300^{\circ} \mathrm{C}$; yield 50%; IR: $v_{\text {max }} 3448(\mathrm{NH}) ; 2221(\mathrm{CN}), 1710$ (CO-ester) and 1660 (COamide); ${ }^{1} \mathrm{H}$-NMR ($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.81$ ($\mathrm{s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 4.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{(5)} \mathrm{H}\right), 7.25-7.60(\mathrm{~m}, 5$ H , arom. H), 8.2 (s, 1H, CH), 9.40 (br s, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{C}} 166.2(\mathrm{CO}), 138.2,128.7,128.7,124.1,120.4$, 120.4 (aromatic-carbons), 143.1, 113.7 (vinyl-carbons), 52.3 $\left(\mathrm{OCH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right), 119.2(\mathrm{CN}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}) 381$.
Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (381.41): C, 59.83; H, 3.96; N, 11.02 \%. Found: C, $60.00 ;$ H, $3.91 ;$ N, 11.12.

Reaction of Compound $\mathbf{3}$ with N, N-Dimethylchloroacetamide: Formation of Compound 11.

To a solution of compound $3(2.65 \mathrm{~g}, 0.01 \mathrm{~mol})$ in methanol $(30 \mathrm{ml})$ containing sodium methoxide was added 0.01 mol of compound 10. The mixture was heated under reflux for 1 h . After cooling, the reaction mixture was poured into ice-cold water. The solid product deposited was collected by filtration and crystallized from ethanol to afford compound $\mathbf{1 1}$ as yellow crystals, mp $220^{\circ} \mathrm{C}$; yield 60%; IR: $v_{\text {max }} 3448,3330\left(\mathrm{NH}_{2}, \mathrm{NH}\right) ; 1700,1680$ (CO-amide); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 2.30$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); 3.51 (s, $6 \mathrm{H}, 2 \mathrm{~N}-\mathrm{CH}_{3}$), 7.00-7.50 (m, 5 H , arom. H), 8.19 (s, 1 H , CH), 9.30 (br s, $1 \mathrm{H}, \mathrm{NH}$); MS (m/z) 356.44.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (356.44): C, 60.65 ; H, 5.66 ; N, 15.72%. Found: C, $60.50 ;$ H, $5.61 ;$ N, 15.62.

General Procedure for the Reaction of Compound 11 with Compounds 12, 13 and 14: Formation of Compounds 15, 16 and 17.

To a solution of compound $\mathbf{1 1}(3.56 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{POCl}_{3}(15$ ml) was added 0.01 mol of, as appropriate, reagents $\mathbf{1 2 , 1 3}$ and $\mathbf{1 4}$. The reaction mixture was heated under reflux for 2 h . After cooling, the reaction mixture was poured into ice-cold water and then neutralized with ammonia solution. The precipitate formed was collected by filtration and crystallized from the proper solvent.
4-Methyl-3-[morphlino-4-ylmethylene)-amino]-4,7-dihydroth-ieno[2,3-b]pyridine-2,5-dicarboxylic acid 2-dimethylamide-5phenylamide (15).

Compound 15 was obtained as yellow crystals from EtOH/DMF, mp $280^{\circ} \mathrm{C}$; yield 65%; IR: $v_{\text {max: }} 3548(\mathrm{NH}) ; 1700$, 1685 (CO-amide); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 2.22$ (s, 3 H , $\left.\mathrm{CH}_{3}\right) ; 3.41\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{NCH}_{3}\right), 7.00-7.50(\mathrm{~m}, 5 \mathrm{H}$, arom. H$), 8.20$ (s, 1H, CH), 9.32 (br s, $1 \mathrm{H}, \mathrm{NH}$); MS (m/z) 453.
Anal. Calcd. For $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ (453.56): C, 60.91 ; H, 6.00; N, 15.44%. Found: C, 60.83 ; H, 5.98; N, 15.42.

3-(Dimethylaminomethyleneamino)-4-methyl-4,7-dihydro-thieno[2,3-b]pyridine-2,5-dicarboxy-2-dimethylamide-5-phenylamide (16).

Compound 16 was obtained as brown crystals from dioxan, mp $275{ }^{\circ} \mathrm{C}$; yield 63%; IR: $v_{\max } 3548(\mathrm{NH}) ; 1700,1685(\mathrm{CO}-$ amide); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 3.41$ (s, $6 \mathrm{H}, 2 \mathrm{NCH}_{3}$), 7.00-7.50 (m, 5 H , arom. H), $8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 9.32 (br s, $1 \mathrm{H}, \mathrm{NH}) ;(\mathrm{m} / \mathrm{z}) 411$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ (411.52); C, 61.29; H, 6.12; N , 17.02 \%. Found: C, $61.23 ;$ H, $6.00 ;$ N, 17.12.

4-Methyl-3-pyrrol-1-yl-4,7-dihydrothieno[2,3-b]pyridine-2,5-dicarboxylicacid-2-dimethylamide-5-phenylamide (17).

Compound 17 was obtained as yellow crystals from EtOH/DMF, mp > $300{ }^{\circ} \mathrm{C}$; yield 60%; IR: $v_{\text {max: }} 3548(\mathrm{NH})$; 1700, 1685 (CO-amide); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO): $\delta_{\mathrm{H}} 2.22$ (s, 3 $\mathrm{H}, \mathrm{CH}_{3}$); 3.41 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{~N}-\mathrm{CH}_{3}$), 7.00-7.50 (m, 5 H , arom. H), 8.20 (s, 1H, CH), 9.32 (br s, $1 \mathrm{H}, \mathrm{NH}$); MS (m/z) 406.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (406.50): C, $65.00 ; \mathrm{H}, 5.46 ; \mathrm{N}$, 13.78 \%. Found: C, $65.13 ;$ H, 5.33 ; N, 13.72.

REFERENCES AND NOTES

[1] E. A. Hafez, M. H. Elnagdi, A. A. Elagamey and F. M. A. El-Taweel, Heterocycles, 26, 903 (1987).
[2] F. A. Abu- Shanab, B. Wakfield, F. Al-Omran, M. M. Abdel Khalek and M. H. Elnagdi, J. Chem. Res., (S) 488, (M) 2924 (1995).
[3] H. Al-Awadhi, F. Al-Omran, M. H. Elnagdi, L. C. Infants, C. Foces-Foces, N. Jagerovic and J. Elguero. Tetrahedron, 51, 12745 (1995).
[4] A. H. H. Elghandour, A. M. Hussein, M. H. Elnagdi, A. A. Harb and S. A. Metwally J. Prakt. Chem., 334, 723 (1992).
[5] M. H. Mohamed, M. M. Abdel-Khalik and M. H. Elnagdi, J. Heterocyclic Chem., 38, 685 (2001).
[6] S. Z. A. Swellim, F. M.A. El-Taweel and A. A. Elagamey, Bull. Soc. Chim. Fr., 133, 229 (1996).
[7] A. M. Hussein, A. A. Atalla, A. M. Kamal El-Dean, Pharmazie, 50, 788 (1995).
[8] T. M. Abu Elmaati and S. B. Said, N. S. Abu Elenein, M. A. Sofan and M. N. Khodeir, Polish J. Chem., 76, 945 (2002).
[9] T. M. Abu Elmaati and F. M. A. El-Taweel, J. Chin. Chem. Soc., 49, 1045 (2002).
[10] J. Becher and C. C. Stiden, Sulfur Reports, 8, 105 (1988).
[11] R. Lie and K. Undheim, Acta Chem. Scand., 27, 1756 (1973).
[12] V. A. Bakulev, V. S. Berseneva, N. P. Belskaia, Y. Y. Morzherin, A. Zaitsev, W. Dehaen, I Luyten and S. Tuppet, Org Biomol. Chem., 1, 134 (2003).
[13] G. Wagner, H. Vieweg, S. Leistner, N. Bohm, U. Krasselt, V. Hanfeld, J. Prantz and R. Grupe, Die Pharmazie, 45, 102 (1990).
[14] G. Wagner, H. Vieweg and S. Leistner, Die Pharmazie, 48, 464 (1993).

